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Abstract. Results from high-temperature series for 2 class of discrete, classical spin models on
the square lattice suggest that the phase boundary is, at least in part, given by a simple heuristic
principle. It is shown how this principle can be extended to triangular and hexagonal lattices by
making use of duality and the star-triangle transformation. For the Potts model, the exact phase
transition is recovered, not only for integer number of states, but also in the percolation limit,
For more complicated models, a number of phase diagrams are derived, which are presumably
exact except in regions where partially broken symmetry phases or massless phases intervene.
The principle can also be applied to quenched bond-diluted spin models. The results for the
Potts model are obtained for aft three lattices and shown to be exact in certain limiting cases.
The M — 1 limit of the wreath product model S(M) z S(M), which corresponds to ‘double’
percolation, is studied o provide an example for which the principle is completely incorrect.

1. Introduction

Discrete, classical spin models such as the Ashkin-Teller and clock models and their
generalizations have complicated phase diagrams due to the possibility of the presence of
partially broken symmetry and Kosterlitz—Thouless (massless} phases, see, e.g., [1-3] and
references quoted there. Recently, the phase diagrams for a number of such models on the
square lattice have been calculated approximately by means of 16-term high-temperature
expansions for the free energy [4]. Although Kosterlitz-Thouless phases could not be
identified with this method, the boundaries of the phases with partially broken symmetry as
well as those where the symmetry of the spin model is broken completely could be detected.
These latter phase boundaries always seem to coincide [4} with those given by a heuristic
principle called psendo-duality (at least for models which ailow for a duality transformation).
1t is the purpose of the present paper to extend this principle to the hexagonal and triangular
lattices and to apply it to a variety of pure and quenched bond-diluted spin models.

The organization of this paper is as follows: in section 2, the class of spin models
that we are dealing with is briefly described together with the duality and star-triangle
transformations for these models. The principle of pseudo-duality is defined for all three
lattices. In section 3, this principle is applied to a variety of spin models. For the Potts
model, the exact phase transition points are obtained for all lattices. Tsotropic and anisotropic
percolation on the three lattices can be considered as the limit (number of states) tends to 1
of the Potts model. In all cases, the exact percolation thresholds are recovered. A number of
phase diagrams for models with two independent Boltzmann factors or coupling constants is
proposed and the validity of the principle is discussed on the basis of the high-temperature
series results of [4] and of the ‘extra-special’ points found in [5], where a star-triangle
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transformation is exact. In section 4, the principle is applied to the quenched bond-diluted
Potts model. The derived phase boundaries are discussed and shown to be valid only in an
approximate way, although they are exact at the percolation threshold and in the pure limit,
In section 5, the M — 1 limit of the wreath product model S(M) : S(M) is studied and it
is shown, that this corresponds to percolation on percolation clusters (‘double’ percolation),
so that the phase boundaries are known exactly. In this case, the principle is shown to
fail completely. In section 6, the results are discussed and the validity of the principle is
elucidated.

2. Spin mocplels, duality, the star-triangle transformation and pseudo-duality

Two classical spins, each of which can be in any of a finite number M of different states,
have an interaction energy given by an M X M matrix E(i, j). If a permutation g from the
symmetric group S(M) is such that the energy is invariant, i.e. such that

E(g@), g =EG j) fori,j=1,2,....M (2.1)

holds, then g is an element of the symmetry group G of the spin model. If G is transitive,
it is of the type called permissible [3]. In this case, E(7, j) is necessarily given in terms of
the incidence matrices My(i, 7) of the graphs L; with M vertices, which are obtained from
a single edge (undirected) by application of the elements of G:

EG, j) =Y EMG, J)

k=1 (2.2)
MeGi, ) = { 1 if there_ is g € G with (, j} = (g(1), g(k))
0 otherwise.

Here in the second equation (i, j) = (Jj, ) denotes an undirected edge and s is the number
of distinct graphs L; obtained in this way. In writing the first of equations (2.1), use has
also been made of the fact that E (i, {) = O can be chosen for all { by the transitivity of G.
In the present paper, we restrict ourselves to spin models for which the symmetry group
G contains a regular (i.e. M element) Abelian subgroup 4, which will be written additively.
This ensures (see below) that the spin model has a dual with symmetry group G, which
also contains 4. The states of the spin model can then be identified with the elements of A
and the M (i, j) are necessarily linear combinations of the matrices Q,(i, j} defined as

Qall, ) =38(j,i—a) (2.3)

where the difference is to be interpreted in A. In fact, Q. (¢, /) + Q- (i, j) isfora# 0 an
incidence matrix for the group A. This implies that E(i, 7) depends only on the difference
I—jin A

EGN=EG—j) =) EaQuli,))  Eu=E_. (2.4)
a0

The Boltzmann factor corresponding to E(i, ) is then

Q, j) =exp—BEG, /) =Y 0aQali, /) (2.5)
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with
{ i fora=20 2.6)
exp—BE, for a # 0. )
The matrix (i, j) has normalized eigenvectors of the form
pa() = M2, (j) R : @7

where the x.{j) are the characters of the (necessarily one-dimensional) irreducible
representations of A. The eigenvalues of the Boltzmann factor matrix are

ho = OpXa(=b). @8)
b

These define a dual Boltzmann factor matrix by

QG =06 - =) 0040, 1), @ = ha/Do. 2.9)

The symmetry group G of (i, j) obviously contains A again. This duality transformation
[6-8. 3] connects the partition fenction of the original spin model on a planar graph P with
the partition function of the dual spin mode! on the dual graph B, which is obtained from
P by putting a vertex in each face of P and connecting two such vertices by an edge of P
if the corresponding faces of P have an edge in common:

Z(P, Q) = MVOHEDILEEN 75, &), (2.10)
Here V(P) and E(FP) are the vertex- and edge-sets of P, respectively. Defining

lim |V(P)[InZ(P, Q) (2.11)

V= V{00
equation (2.16) implies for the (self-dual) square lattice:
Yaa(2) = In(A3/ M) + y5q() (2.12)

whereas the corresponding equation for the dual pair of the triangular and hexagonal lattices
is '

Yhex (S2) = 2 In(A3/M) + Ly (). (2.13)

The corresponding results for the anisotropic lattices (for which there are different couplings
depending on the orientation of the edges) are easily found as

¥sg(S1, §2) = (2P M) + 358, ) (2.14)
and

Phex (221, 22, 23) = L AP AP 18) + Lym(Ss, o, ). (2.15)
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For the square lattice, the pseudo-duality condition found in [4] is simply the vanishing
of the extra term on the right-hand-side of equations (2.12) or (2.14):

ln(lél )l((,z) /M) =0 or A((,”J.éz) = M (psendo-duality for sq). (2.16)

It is, for a self-dual model, a necessary, but by no means sufficient, condition for the
self-duality relation §2; = $2» (which implies £, = ;) to be valid.

In order to extend the notion of pseudo-duality to the triangular and hexagonal lattices,
another ingredient is needed. This is provided by the star-triangle relation obtained by
summing over all states of the central spin in a star configuration [3]:

>l (), @)k, @) = CE — NG ~ DK - HWG, 1, k). 2.17)

Here the QF are effective pair interactions on a triangle and W(i, j, k) is the remaining
three-spin interaction. The requirements Q7(0) = 1 and W(i, i, {) =.1 fix the constant C as

C= Zwﬁ”wf}wf).
a

Equation (2.17) implies
Pex(S21, S22, 23) = L In € + 1124, 25, ). (2.18)

Comparing this with the duality relation of (2.15) suggests as pseudo-duality relation for
the hexagonal lattice:

In(ASPAPAY /M) = In (Z wg"mf’wg?)) (psendo-duality for hex). (2.19)

a

From this, the duality transformation of (2.9) gives, for the triangular lattice, the relation
In ( Z xgmgﬂ,xga)) = 21In(M) (pseudo-duality for tri). (2.20)
d

For a self-dual model, equations (2.19) or (2.20) are necessary but not sufficient for the
existence of a star-triangle transformation, i.e. for the vanishing of the three-spin interaction,
W, j k) =1forall i, j and k [5].

The heuristic nature of the above ‘derivations’ of the pseudo-duality relations of
equations (2.16), (2.19), (2.20) is obvious. It is, therefore, not possible to comment on
the physical content of these relations in an « priori fashion. The rest of this paper is
concerned with the exploration of the consequences of these relations and, hence, to obtain
some insight into the range of validity of them as indicators of phase boundaries.

3. Psendo-duality for some spin models

3.1. The Potts model

The Potts model has the full symmetric group S(M) as symmetry group, so that its
Boltzmann factor matrix has the form
i fori=j

QGJ):{&J fori#j. 3.1
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Since S(M) contains every regular Abelian group (for instance, the cyclic group Z(M)),
the model is self-dual with dual Boltzmann factor matrix

&6, J) {1 forij (32)
I, = - .
o= - o)/ + M -1l
since the eigenvalues of the matrix of equation (3.1} are

M=1+M-Do  l=1-w  fora#0. (3.3)

The pseudo-duality conditions can, after some algebra, be cast in the forms

M - DNeoPe® +o® + @ =1 (sq) (3.4)
(Mz —~3M+ 1)(0(1)60(2)0)(3) + (M — 1)(&)(”&)(2] o+ w(l)wﬁ) + w@)wﬁ)) + ) + w® + PRE)

=1 (hex) ) (3.5
M - 2)eVe@p® + pWe® £ »Me® 4 @y® =1 (txi). ] (3.6)

Equation (3.4) just defines the self-dual Potts model, whereas equations (3.5) or (3.6} ensure
the existence of a star-triangle transformation [5]. In all cases, equaftions (3.4)—(3.6) are
known (or strongly conjectured) to define the exact phase transition points for the Potts
model on these Jattices [9-12].

The percolation thresholds follow from equations (3.4)—(3.6) by setting the probability
for a bond of orientation i, p;, equal to 1 —@¥ and taking the limit M — 1; the results are

n+p=1 (sq) G
—mpptpptppstpeps=1 (hex) (3.8
—ppatpitptp=1 (tri). (3.9)

For the isotropic case, this gives the exact percolation thresholds [13]:
pe = % (sq) pe = 1—2sin(w/18) (hex) Pe = 2sin{m/18) (tri). (3.10)

The results of this subsection are also special cases of those obtained for the Potts model
on the chequerboard lattice in [14] and of those obtained for a Potts model with additional
three-spin inferactions in half of the triangles of the triangular lattice in [15] and [16].

3.2. Wreath product models

In this subsection the simplest wreath product models of the type S(3;)1S(Mz), which were
first described by Zamolodchikov and Monastyrskii [17], are conside_:red. For these models,
there are rwo independent coupling constants or Boltzmann factors &y and wz, which are
each associated with a graph as in equation (2.2), where 5 = 2 now. The graph L, consists
of M, copies of the complete graph on M, vertices, whereas L» is the complement of L,
in the complete graph on MM, vertices. Explicitly, the Bolizmann factor matrix can be
written:

1 fori=j
QU, =1 w fori=jmod M, and { #£ § (3.11)
o) otherwise.
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Since S(M1) : S(M7) contains the regular Abelian subgroup Z{M;) @ Z(M>), a duality
transformation exists; the eigenvalues of the Boltzmann factor matrix are:

Ao=14+ (M) — Dy + MMy — Dan (non-degenerate)
M =14+ My — Dwy — Mien {(M — 1)-fold degenerate) (3.12)
A =1—ay {Ma(M — 1)-fold degenerate).

Equation (2.9) now shows that the symmetry group of the dual model is S(32) 2 S(M), so
that the model is self-dual only for M; = M>.

For the isotropic square lattice, the pseudo-duality relation of equation (2.16) gives the
straight line

(M — Dy + Mi(My ~ Dy = (M M) ~ 1. (3.13)

For the self-dval case (M; = M>), this result can already be found in [17]; it is then
the self-dual line. For the isotropic hexagonal and triangular lattices, equations (2.19) and
(2.20) vield rather involved expressions, which will not be given here explicitly for the
general case. The resulting curves and straight lines are shown in figures 14 for the cases
My, M) = (2,2), (2,3), (3,2) and (3,3), respectively. Also shown are the Potts model
points on the line @y = w, as well as the special points, where the model reduces to a
simpler one or factorizes into a product of simpler ones. For the case M) = My =2 in
figure 1, which is the symmetric Ashkin—Teller model, there are three such special points
for each lattice. These are the points I on @, = 0 and its dual [ on w; = 1, where the model
reduces to the Ising model, and I; (self-dual), where a factorization into two (critical) Ising
models occurs; I; always lies on the curve ey = mg, For this model only, the pseudo-dual
curves for the hexagonal and triangular lattices can be given explicitly:

@ =1+ w — (4o + 5012 (hex) @ =1 — 202 (tri). (3.14)

The phase boundaries for the dual pair $(2) : ${3), S(3): 5(2) are shown as figures 2 and
3; these models can reduce to (critical) Ising and three-state Potts ‘models. These special
points are [ on wz = 0 and P(3) on w; = 1 for S{2}2 5(3) and their duals fonw =1and
P(3) on wy = 0 for $(3) 1 5(2). In the case of the self-dual model $(3) 2 §(3), there is a
dual pair of special points, P(3) on w; =0 and P(3) on w; = I, whete the model reduces
to a critical three-state Potts model, see figure 4.

In the case of the square lattice, the high-temperature series analysis [4) indicates that
the portion of the pseudo-dual line is indeed a phase boundary for @ 2 @ with complete
symmetry breaking. In the region w; > wz, there are two phase boundaries, starting at the
Potts model point P(M;M;) and ending at the appropriate points on w; = 1 and @y = 0,
which enclose a phase with partially broken symmetry. Figures [-4 suggest that the same is
true for the triangular and hexagonal latiices, so that the curves indicated are, for wz 2 @),
presumably the exact phase transition curves for complete symmetry breaking.

For a self-dual model, there may be points in the phase diagram, where a star-triangle
transformation is exact [5]. If these points are not Potts model or trivial extreme points,
they are called ‘extra-special’. In figure 4 the extra-special points for the S(3} 2 S(3)
model have also been indicated. It has been conjectured that these are the exact points
where a Kosterlitz—Thouless or massless phase (characterized by algebraic decay of the
correlation functions) first appears. Such massless phases may be expected for models
which contain a regular Abelian subgroup Z{(M) with M = 5 [2,5]. Since the S(3): 5(3)
model contains Z(9), a massless phase may be expected here. If the point T really is the
apex of a massless phase, then this phase seems to be embedded completely inside the
partially broken symmetry phase.
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Figure 1. Phase diagrams obtained from pseudo-duality
for the square (s), hexagenal (h) and triangular (t)
lattices for the symmetric Ashkin-Teller model with
symmetry group S(2) : §(2). Also shown are the four-
state Potts phase transition points as well as the points
[ and F, which are Ising critical points and [, where
the model factorizes into two critical Jsing models.
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Figure 3. As for figure 1 for the S(3) 1 $(2) model.
Special points are the duals of those in figure 2.

3.3. Models with primifive symmetry groups
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Figure 2. As for figure | for the 5(2) 2 5(3) model.
Special points are the six-state Potts model transition
point and the points 7 and P(3), where the model
reduces to a critical Ising model and to a critical three-
state Potts model, respectively.
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Figure 4. As for figure 1 for the self-dual 5(3): 5(3)
model. Special points indicated are the nine-state Potts
model transition point P(9}, the points where the model
reduces 1o a critical three-state Potts model (P(3} and
P (3)) as well 2s the points T;, and T,, which are extra-
special, i.e. where a star-triangle transformation exists.

For models with a primitive symmetry group, no partially broken symmetry phases are
possible [3]. In this subsection, we consider the two models with two independent coupling
constants, which contain regular Abelian subgroups and have not more than 10 states. These
are the five-state clock model with symmetry group Z(5) and a nine-state model [3], both
of which are self-dual. For the Z({5) model, the Boltzmann factor matrix has the form
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I3 fori=j
), =1 wi fori— j=+Imod5 (3.15)
W fori — j=+2mod35.

This matrix has the eigenvalues
Ap.= 142w + 202 (non-degenerate)
Mm=1+3(/5~Do; — 45+ 1w  (twofold degenerate)  (3.16)
A =1= 35+ Do + L(+/5 = Dwn (twofold degenerate).

For the isotropic square lattice, the pseudo-duality relation of equation (2.16) is the self-
duality condition again:

o +wy = 15~ 1). (3.17)

For the isotropic triangular and hexagonal lattices, equations (2.19), (2.20) and (3.15), (3.16)
give the curves shown (together with the line of equation (3.17)) in figure 5. Also shown
are the critical five-state Potts model point at P (5) and the extra-special points T; and 75
found in [3]. For the square lattice, the short series [4] picked up the phase transition line
of equation (3.17} only in the neighbourhood of P(5). It does not seem unreasonable to
suppose that the curves in figure 5 really represent the phase transition between the two
extra-special points 77 and 75, including the Potts model point P(5). These extra-special
points could then indeed be the apexes of the massless phases for the present model {18].

- - ! - /
8- — ! " - !
bl - - ; s . - ’
w - r w, - /
2 - / 2 s /.f
- -
0% ," a8 - < e ’
-
, - 113 i
T, /
1t (RIS / !
; ’
o 2t ' al e (L] /l
!
R 15) / LT
/ el 191 /
0= T, 15 02
; e 0l P
b2 7 Fi%! 2 s
; 2 /
(1] Fl | ! '] | | 1 [
o a2 13 ng i1} . o o2 13 u6 0g 12
w, Wy

Figure 5. As for figure 1 for the Z(5) model. The Figure 6. As for figure I for the primitive nine-state

special points are P{5) for the critical five-state Potts model. Here P(9) is the nine-state Potts transition

model and the extra-special points Tiy, Ton, Ty and Tpe.  point, whereas the model factorizes into two critical
three-state Potts models in £y(3) and P2 (3).

The nine-state primitive model alluded to above [3] is defined here by giving its
Boltzmann factor matrix explicitly:
1 fori = j
wy for (i, j) an edge of one of the triangles
(123), (456), (789), (147), (258) or (369)

Wy otherwise.

QG = (3.18)
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The symmetry group of this model (which is technically the automorphism group of the
covering graph of the complement of two triangles) contains Z(3) & Z(3), but not Z{9),
so that no Kosterlitz—Thouless phases are to be expected. The eigenvalues of the matrix of

equation (3.18) are
Ao =14 4oy + dan (non-degenerate)

Ay =140 — 20 (fourfold degenerate) (3.19)

Ao=1—20+ws {fourfold degenerate).

The pseudo-dual curves derived from equations (2.15), (2.19), (2.20) and (3.18), (3.19} are
shown in figure 6. Also indicated are the nine-state Potts critical point, P(9), and the points
where the model factorizes into a product of critical three-state Potts models (P (3) and
P5(3) on the curves o = w? and oy = w?, respectively). For the present case, figure 6 may
be expected to be the exact phase diagram, since there are no partially broken symmetry or
massless phases for this model.

4. Quenched bond-diluted spin models
It is tempting to extend the pseudo-duality relations to cases with quenched bond disorder.
For the square lattice, equation (2.16) would be replaced by

AP + naPy =M  (sq) ' @1

- where the symbol () denotes an average over bond disorder. Similarly, for the hexagonal
lattice, equation (2.19) would be replaced by

3 .
S Al - (m 3 wg”w;%gﬂ) =InM  (hex) (4.2)
i=1 a
whereas equation (2.20) for the triangular lattice becomes
(mZAg‘)AE?AS)) =2lnM  (tri). (4.3)
a@

In the following, we will consider equations (4.1)-(4.3) only for the Potts model and only for
the bond-diluted case, so that a bond is present with probability p (or p; in the anisotropic
case) and absent (this means w = 1 or @® = 1) with probability 1 — p or 1 — p;. In the
most general anisotropic case, {4.1}-(4.3) yield the results:

il + (M — Do+ palnf1 + (M — DoPl= (g1 + p2—Dln M (4.4)

3
— prpapaInfl 4+ (M = Do VoPw®]~ 3" pip)(1 — pe) In[l + (M ~ DeoPw’]
) k=1

3
+ 3 pulpi + pj — pepp) il + (M — D™
k=]
=(—pips+ppe+pps+pps— DM 4.3)

p17ap3Infl + (M — D(@Ve® + oMe® + @™y + (M — )M ~ 2eVe@e®)

3 .
+ 3 pe(1 = pippy {1 + (M — 1™
k=1

=(—-ppp3+p+pr+ps— DM, (4.6)
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In equations (4.5) and (4.6), i and j are those indices from (123) not equal to k.
Equations (4.4}H4.6) are consistent with the percolation results of equations (3.7)-(3.9)
in the sense that no solution for the Boltzmann factors @® is possible if the probabilitics
p: are such that no percolation occurs; exactly at the percolation thresholds, all w® are
necessarily equal to zero.

For the isotropic case (py = p» = p, 00 = 0®? = ©), equation (4.4} has the explicit
solution

0= MV -1 pzi (s9) @7

This is identical to a heuristic result due to Southern [19} derived by means of the replica
trick. For the Ising model, M = 2, this result was first derived by Nishimori [20], who also
derived the general equation (4.1) for the isotropic Ising model [21]. The corresponding
equations determining « in the cases of the other two lattices are {with py = p2=ps =p
and o = @ = 0®e):

— PP Infl + (M — D] = 3p%1 — p)In[l + (M — De?] +3p*2 — p)In[1 + (M — 1)e]

= (—p*+3p* — 1) In(M) (hex) 4.3)
PP In[1 + 3(M — Dew? + (M — 1}(M — 2)0*] +3p(l — pH a1 + (M ~ D)w]
=(—p’ +3p—1}In(}) (tri). (4.9)

As shown in figure 7 for the Ising (M = 2) and four-state Potts models, the solutions for @
of equations (4.8) and (4.9} smoothly interpolate between w = 0 at the percolation threshold
and the exact critical w; at p = 1 in a way similar to the one given by equation (4.7).

o8 [~
mc
06 - 5
: EXU]
o L
)
Th
a2 R Figure 7. The phase boundaries for the quenched bond-
diluted Potts model as obtained from pseudo-duality for
the three planar lattices (h,s,t) for M = 2 (Ising model)
° L e q" s d = and M = 4. p, is the percolation threshold, [ and P(4)
ke ts <h p ¥ are the pure model transition points.

In the neighbourhood of the percolation threshold p., equations (4.7)~(4.9) all imply
the following behaviour for w:

@ = (p — pe)(In(M))/pc(M — 1] +0((p — pc)*) (4.10)

which is in accordance with renormalization group [22] and replica trick [23] arguments.
In the neighbourhood of p = 1, equation (4.7) is known to be incorrect for M = 2,3 and
4 [23]. For M = 2, equation (4.8) can also be compared with an exact result in this limit.
Here also a (small) discrepancy in 7,1 (37,/8p) at p = 1 is found: the exact value is 1.579
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[24], whereas (4.8} gives a value of 1.600. A third limit, M — I, describes the doubly
diluted case; equations (4.7)—(4.9} all reduce to the exact result [23,25]

p(l—w)=p. (4.11)

in this limit.

It is concluded that equations (4.8} and (4.9) are useful approximate relations, which are,
just as equation (4.7) is exact in a number of limiting cases (p—p. small, p =l and M — 1).
This can then also be concluded for the general anisotropic results of equations (4.4)—{4.6).
We will return to the validity of the pseudo-duality relations (including the Nishimori and
Southern expressions) in the quenched bond-diluted case in section 6.

5. A counterexample: double percolation
In this section, we study the M — 1 limit of the self-dual S(M) : S(M) wreath product
spin model introduced in section 3.2. To this end, the Boltzmann factor matrix of (3.11) is
rewritten as (M) = M, = M):

QG ) =wr+ (A —o1)8(, j) + (w0 — 02)du (i, ) (5.D

where (i, ) is the Kronecker delta and 8§y (7, j) is given by

1 ifi=jmod M
Sp (i, j) = 52
@) {O otherwise, 2
The partition function for this model on a graph or lattice L is then
Zy= Y. [+ Q= 008G, i) + @1 — 02)8u (G, in)] - (53)
‘ fu=l,.,.,M? €€E
veV

Here V and E are the vertex- and edge-sets of L, respectively, and v and v; are the vertices
at the ends of the edge e. Equation (5.3) can be rewritten using edge variables g, which
take the values O and 1:

ZiLy= Yy > []er ™0 —w)sG. ) + (@ — o)8u, ™ (54

iy, veV p,=0,1eckE

Now the edges present (i.e. those with g, = 1) will define a number of connected
components. This number will be denoted by N.{u.}. The form in the square brackets
in (5.4) is such that if a summation over the spins is done for each connected component,
then the result will be M times that obtained by summing a product of factors of the form

AG, j) = (1 — w8, j) + (@ — w2} . (5.5)

but with the vertex variables in the range 1, ..., M. Equation (5.5) is just the Boltzmann
Tactor matrix for an M-state Potts model up to a factor:

Al ._.71 : e >
G 7) = —“’2>{mf=(w;—wz)/<1—wz)- | =0
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Figure 8. Phase diagrams for double percolation on the planar lattices ¢(h,s,t}. The bold curves
are exact, the fine ones follow from pseudo-duality. The percolation thresholds are at p.

Therefore, equation (5.4) is equivalent to

Ny
zZ@wy= Y o1 — o Terepr¥etod T 28, (o) 7
He=0,1 . k=1

with Z&) (o) the partition function for the M-state Potts model on the kth connected
component. It is noted here that o’ has a physically meaningful value only for & 2 ws, i.e.
in the region where the S(M) : (M) model has an intervening phase with partially broken
symmetry, see section 3.2.

In the limit M — 1, (5.7) describes “double’ percolation: the first factors amount io a
probability p = 1 — w; for the presence of a bond and the factor M™:{#<) will provide a
phase transition at p = p.. If @’ > 0 holds, the product of Potts model partition functions
can be interpreted as a secondary dilution on percolation clusters; those bonds, which are
left over on the first dilution, will now have a probability of being still present reduced by
a factor

g=1-o' ={—-w)/(1-wm)=>0-w)/p. (5.8)

There will then be a second phase transition at pg = p., ie. for pg > p. there is still an
infintte percolation cluster. Figure 8 shows these phase transition boundaries for the planar
lattices as bold curves. Also shown here are the (fine) curves given by the pseudo-duality
relations of equations (2.15)—(2.19), (2.20), which are given by

p=1/(1+q) (sq)
PA+¢)-3p21+gH)+2=0 (hex) (5.9)
PU+g)+3p+g)+2=0 (i)

for the present case. The failure of the psendo-duality relations is complete here forg < 1;
this is obviously due to the fact that a percolation interpretation of g (equation (3.8)) is
possible only for w; = w;, so that, for integer M, one always stays in a region of the
phase diagram with intervening partially broken symmetry phase, This then seems to carry
through in the limit M > 1.
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6. Discussion

The successes and failures can be understood qualitatively in a renormalization-group
context, if one supposes that renormalization keeps a part of the subspace defined by the
pseudo-duality relations invariant. This part is not attracted to a non-trivial fixed point
corresponding to a phase, which is either massless or has partially broken symmetry. This
would explain the failure of the principle in case such phases are present.

The situation for the quenched bond-diluted systems studied in seciion 4 is not yet clear
on this basis. Here the replica method can be used to elucidate this problem: the original
problem is the calculation of the average of In Z over the disorder. The replica trick replaces
this average by

(li_r)%(z" - I)/n). . 7(6.1)

Now for n integer. the average of Z" is, in the bond-diluted case,

(zny= Y I‘[[ Hsz +1—p] (6.2)

i}y it €€E
veV

Here the notation is as in (5.3). This is simply the partition function of a spin model with
M” states per spin and with the Boltzmann factor matrix given by

H
Q.G =] RE M1 -, (6.3)
k=1

It is now not difficult to see that the equations derived in section 4 would be correct if
the psendo-duality relations are valid for all models of the type of equation (6.3} for all
(and also, formally, for n — (). The symmetry group of the model in equation (6.3) is the
n-fold wreath product of the symmetry group G of §2(i, j) with itself. For these models,
phases with partially broken symmetry do occur (and also massless phases) as shown in
sections 3.2 and 5. This then implies that psendo-duality is not cormrect for all models of the
type of equation (6.3) in all regions of the phase diagram and the replica argument indicates
that this is the reason for the deviations from exact results for the quenched bond-diluted
models.

The rest of this section will be devoted to an over-view of the results obtamed 50 as to
provide some perspective with regard to other results in this field.

(i) For pure, self-dual models, pseudo-duality on the square lattice is, in general. a
necessary but not sufficient condition for (Kramers—Wannier) duality. For such models
with at most two independent Boltzmann factors, pseudo-duality is equivalent to duality,
however. In this case, pseudo-duality gives no new results.

(i) For pure models, which are not self-dual, pseudo-duality gives new information on
the phase diagrams of such models for the square lattice. These results are partly (i.e. not
for all possible models) corroborated by high-temperature expansion results [4].

(iit) For pure models (self-dual or not} on the hexagonal and triangular lattices, pseudo-
duality involves a star-triangle transformation. The results obtained are new, except for the
Potts model, where they correspond to the exact ones.

(iv) All pure models treated here have symmetric Boltzmann factor matrices. Such a
restriction to non-chiral models is not essential, however. For chiral models, see, e.g., the
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helical Potts model as treated by Kardar [26] or the recent work on the six-state chiral Potts
model reported in [27].

{v) The pseudo-duality results always reduce to exact results in cases where the model
reduces to the Ising or Potts models or to a decoupled set of such models. Further checks
can be provided by an argument due to Kardar [26] and by the requirement of compatibility
with the inversion relations known to hold for the Potts model on the chequerboard and
(anisotropic) triangular lattices {28-32]. Preliminary calculations seem to indicate that such
compatibilities are indeed respected.

(vi) For quenched bond-diluted systems, all results not pertaining to the square lattice
are new. For the square lattice, the Ising and Potts model results are identical to the ones
proposed by Nishimori [20] and Southern [19]. Since these are not exact (see section 4,
the discussion above and also the review [33]), the results for the triangular and hexagonal
lattices are also at most useful approximations. For this reason, no results for other diluted
spin systems have been given.
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