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Absrmd. Results from high-temperature series for a class of discrete, classical spin models on 
the square lattice suggest that the phase boundary is, at least in pW, given by a simple heuristic 
principle. It is shown how this principle can be  extended to uiangular and hexagonal lattices by 
making use of dualiry and the star-triangle transformation. For the Potts model, the exact phase 
transition is recovered, not only for integer number of states, but also in the percolation limit 
For more complicated models, a number of phase diagrams are derived, which are presumably 
exact excqt in regions where pattially broken symmetry phases or massless phases intervene. 
The principle can also be applied to quenched bond-diluted spin models. The results for the 
Potts model are obtained for all three laltices and shown m be exact in certain limiting cases. 
The M + 1 limit of the wreath product model S ( M )  z S ( M ) ,  which carresponds to 'double' 
percolation, is smdied to provide an example far which the principle is completely incorrect. 

1. Introduction 

Discrete, classical spin models such as the Ashkin-Teller and clock models and their 
generalizations have complicated phase diagrams due to the possibility of the presence of 
partially broken symmetry and Kosterlitz-Thouless (massless) phases, see, e.g., [l-31 and 
references quoted there. Recently, the phase diagrams for a number of such models on the 
square lattice have been calculated approximately by means of 16-term high-temperature 
expansions for the free energy 141. Although Kosterlitz-Thouless phases could not be 
identified with this method, the boundaries of the phases with partially broken symmetry as 
well as those where the symmetry of the spin model is broken completely could be detected. 
These latter phase boundaries always seem to coincide [4] with those given by a heuristic 
principle called pseudo-duality (at least for models which allow for a duality transformation). 
It is the purpose of the present paper to extend this principle to the hexagonal and triangular 
lattices and to apply it to a variety of pure and quenched bond-diluted spin models. 

The organization of this paper is as follows: in section 2, the class of spin models 
that we are dealing with is briefly described together with the duality and star-triangle 
transformations for these models. The principle of pseudo-duality is defined for all three 
lattices. In section 3, this principle is applied to a variety of spin models. For the Potts 
model, the exact phase transition points are obtained for all lattices. Isotropic and anisotropic 
percolation on the three lattices can be considered as the limit (number of states) tends to 1 
of the Potts model. In all cases, the exact percolation thresholds are recovered. A number of 
phase diagrams for models with two independent Bolmann factors or coupling constants is 
proposed and the validity of the principle is discussed on the basis of the high-temperature 
series results of [41 and of the 'extra-special' points found in [5],  where a stx-triangle 
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transformation is exact. In section 4, the principle is applied to the quenched bond-diluted 
Potts model. The derived phase boundaries are discussed and shown to be valid only in an 
approximate way, although they are exact at the percolation threshold and in the pure limit. 
In section 5, the M -+ 1 l i t  of the wreath product model S ( M )  1 S ( M )  is studied and it 
is shown, that this corresponds to percolation on percolation clusters (‘double’ percolation), 
so that the phase boundaries are known exactly. In this case, the principle is shown to 
fail completely. In section 6, the results are discussed and the validity of the principle is 
elucidated. 

2. Spin models, duality, the star-triangle transformation and pseudo-duality 

Two classical spins, each of which can be in any of a finite number M of different states, 
have an interaction energy given by an M x M matrix E(i ,  j ) .  If a permutation g from the 
symmetric group S ( M )  is such that the energy is invariant, i.e. such that 

E ( g ( i ) , g ( j ) )  = E( i ,  j )  for i, j = 1,2, ... , M (2.1) 

holds, then g is an element of the symmetry group G of the spin model. If G is transitive, 
it is of the type called permissible [3]. In this case, E(i ,  j )  is necessarily given in terms of 
the incidence matrices &(i,  j )  of the ,mphs Lr with M vertices, which are obtained from 
a single edge (undirected) by application of the elements of G. 

s 
E(i ,  j )  = EkMdi ,  j )  

(2.2) k=l 

1 if there is g E G with (i, j )  = &(I), g(k)) 
otherwise. 

Mk(i, j )  = 

Here in the second equation (i, j )  = ( j ,  i) denotes an undirected edge and s is the number 
of distinct graphs Lk obtained in this way. In writing the first of equations (2.1), use has 
also been made of the fact that E( i ,  i) = 0 can be chosen for all i by the transitivity of G. 

In the present paper, we restrict ourselves to spin models for which the symmetry group 
G contains a regular (i.e. M element) Abelian subgroup A, which will be written additively. 
This ensures (see below) that the spin model has a dual with symmetry group 5, which 
also contains A.  The states of the spin model can then be identified with the elements of A 
and the &(i, j) are necessarily linear combinations of the matrices QJi, j )  defined as 

Q . ( i , j )  = G , i  - 4  (2.3) 

where the difference is to be interpreted in A. In fact, Q.(i, j )  + Q-,(i, j )  is for a # 0 an 
incidence matrix for the group A. This implies that E( i ,  j )  depends only on the difference 
i -  j in A: 

E ( i , j ) = E ( i - j j ) = C E , Q . ( i , j )  E , = E - , .  (2.4) 
OM 

The Boltzmann factor corresponding to E( i ,  j )  is then 
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with . ,  

1 for a = 0 

exp -BE. for a # 0. 

The matrix Q~(i ,  j )  has normalized eigenvectors of the form 

! d j )  = M-'r2x.(j) (2.7) 

where the x . ( j )  are the characters of the (necessarily one-dimensional) irreducible 
representations of A .  The eigenvalues of the Boltzmann factor matrix are 

These define a dual Boltzmann factor matrix by 

B(i, j )  = B(i - j )  = CG,Q,(~, j ) ,  W. = LJL~. (2.9) 

The symmew group 6 of 6(i, j )  obviously contains A aggn. This duality transformation 
[6-8,3] connects the partition function ofthe original spin model on a planar graph P with 
the partition function of the dual spin model on the dual graph P, which is obtained from 
P by putting a vertex in each face of P and connecting two such vertices by an edge of P 
if the corresponding faces of P have an edge in common: 

(I 

Z(p, Q) = M ~ v ( p ) ~ - ~ ~ ( p ) ~ - ~  10 IE(P)IZ(P, 6). (2.10) 

Here V ( P )  and E(P) are the vertex- and edgesets of P, respectively. Defining 

equation (2.10) implies for the (self-dual) square lattice: 

vq(W = W t / M )  + yS,(B) (2.12) 

whereas the corresponding equation for the dual pair of the triangular and hexagonal lattices 
is 

% x ( ~ )  = 4 In(G/M) + $yni(6). (2.13) 

The corresponding results for the anisotropic lattices (for which there are different couplings 
depending on the orientation of the edges) are easily found as 

y&l. Qz) = W., ( 1 )  io (2) / M )  + vsq(fizl 61) (2.14) 

and 

( 2.15) (1) (2) (3) hhU(Ql. Qz, 0 3 )  = 4 WO bo A, /W + fvoi(f&, 82 ,  fh). 
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For the square lattice, the pseudo-duality condition found in [4] is simply the vanishing 
of the extra term on the right-hand-side of equations (2.12) or (2.14): 

In(#)Af)/M) = 0 or At’Af) = M [pseudo-duality for sq). (2.16) 

It is, for a self-dual model, a necessary, but by no means sufficient, condition for the 
self-duality relation 521 = f i2  (which implies QZ = 3 2 1 )  to be valid. 

In order to extend the notion of pseudo-duality to the triangular and hexagonal lattices, 
another ingredient is needed. This is provided by the star-triangle relation obtained by 
summing over all states of the central spin in a star configuration [5]: 

~ Q l ( i , o c ) ~ z ( j , o c ) ~ ~ ( k , o c )  =CQ2;(i - j)Q;(j-k)Q:(k-i)W(i, j,k). (2.17) 

Here the are effective pair interactions on a triangle and W(i ,  j ,  k) is the remaining 
threespin interaction. The requirements Qf(0) = 1 and W(i, i, i )  = ~ l  fix the constant C as 

n 

Equation (2.17) implies 

Z A Q ~ , Q ~ , S ~ ~ )  = $InC+-$y&;,Q&Q:). (2.18) 

Comparing this with the duality relation of (2.15) suggests as pseudo-duality relation for 
the hexagonal lattice: 

From this, the duality transformation of (2.9) gives, for the triangular lattice, the relation 

In ( ~ , I . L ’ ) A $ ~ ) A $ ~ )  = 21n(M) (pseudo-duality for tri). (2.20) 
Y 

For a self-dual model, equations (2.19) or (2.20) are necessary but not sufficient for the 
existence of a star-triangle transformation, i.e. for the vanishing of the three-spin interaction, 
W(i, j ,  k) = 1 for all i, j and k [SI. 

The heuristic nature of the above ‘derivations’ of the pseudo-duality relations of 
equations (2.16), (2.19), (2.20) is obvious. It is, therefore, not possible to comment on 
the physical content of these relations in an a priori fashion. The rest of this paper is 
concerned with the exploration of the consequences of these relations and, hence, to obtain 
some insight into the range of validity of them as indicators of phase boundaries. 

3. Pseudo-duality for some spin models 

3.1. The Pons model 

The Potts model has the full symmetric group S ( M )  as symmehy p u p ,  so that its 
Boltzmann factor matrix has the form 

1 for i = j 
o f o r i  # j. Q(i,  j )  = 
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Since S ( M )  contains every regular Abelian group (for instance, the cyclic group Z ( M ) ) ,  
the model is self-dual with dual Boltzmann factor matrix 

for i # j 
fi(i, j) = - (3.2) 1; = (1 - w)/[J + (M- l )w] 

since the eigenvalues of the matrix of equation (3.1) are 

A ~ = I + ( M - I ) u  ~ A , = I - , &  ~ fora#O. (3.3) 

The pseudo-duality conditions can, after some algebra, be cast in the forms 

(M - l)o(’)o” + w(1) + ,(Z) = 1 

( M 2  - 3M + 1)w (1) 0 (2) w 0) + (M - l)(w(1)w(Z) + o ( l ) 0 ( 3 )  + U%@)) + @(I) + U@) + w(3) 

= 1 (hex) (3.5) 

(tri). (3.6) 

Equation (3.4) just defines the self-dual Potts model, whereas equations (3.5) or (3.6) ensure 
the existence of a star-triangle transformation [5]. In all cases, equations (3.4)-(3.6) are 
known (or strongly conjectured) to define the exact phase wansition points for the Potts 
model on these lattices [9-12). 

The percolation thresholds follow from equations (3.4)-(3.6) by setting the probability 
for a bond of orientation i, pi, equal to 1 -di) and taking the limit M --f 1; the results are 

. (sq) (3.4) 

(M - ~ ) ~ ( ~ ) ~ ( 2 ) ~ ( 3 )  + w(1)w(2) + U(1)w(3)  + U(2)w(3)  = 1 

P1 + P2 = 1 (sq) (3.7) 

- P I P Z P ~  + P I P Z   PIP^ + PZP3 = 1 (3.8) 

- P1P2P3 + PI + PZ + P3 = 1 (3.9) 

(hex) 

(tri). 

For the isotropic case, this gives the exact percolation thresholds [13]: 

pc = 4 (sq) pc = 1 - Zsin(nj18) (hex) pc = Zsiu(nj18) (tri). (3.10) 

The results of this subsection are also special cases of those obtained for the Potts model 
on the chequerboard lattice in [14] and of those obtained for a Potts model with additional 
threespin interactions in half of the triangles of the triangular lattice in [15] and [16]. 

3.2. Wreath product models 

In this subsection the simplest wreath product models of the type S ( M I )  tS(M2) ,  which were 
first described by Zamolodchikov and Monastyrskii [17], are considered. For these models, 
there are two independent coupling constants or Boltzmann factors wj and m, which are 
each associated with a graph as in equation (2.2), where s = 2 now. The graph LI consists 
of M2 copies of the complete graph on M I  vertices, whereas L? is the complement of L I  
in the complete graph on M I  Mz vertices. Explicitly, the Boltzmann factor matrix can be 
written: 

f o r i =  j 
for i EE j mod MZ and i # j Q(i ,  j )  = wl I ’  wz otherwise. 

(3.11) 
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Since S(M1) z S(M2) contains the regular Abelian subgroup Z(M1) @ Z ( M z ) ,  a duality 
transformation exists; the eigenvalues of the Boltzmann factor matrix are: 

ho = 1 + (MI - I)OI + MI ( M z  - I)% 

AI = 1 + (MI - 1)01 -MI% 

1 2  = 1 - 0 1  

(non-degenerate) 

( (Mz - 1)-fold degenerate) (3.12) 

(Mz(M1 - 1)-fold degenerate). 

Equation (2.9) now shows that the symmetry group of the dual model is S(M2) I S(Ml), so 
that the model is self-dual only for MI = M2. 

For the isotropic square lattice, the pseudo-duality relation of equation (2.16) gives the 
straight line 

(3.13) 

For the self-dual case (MI = Mz), this result can already be found in [17]; it is then 
the self-dual line. For the isotropic hexagonal and triangular lattices, equations (2.19) and 
(2.20) yield rather involved expressions, which will not be given here explicitly for the 
general case. The resulting curves and straight lines are shown in figures 1-4 for the cases 
(MI, M2) = (2, 2), (2,3), (3,2) and (3,3), respectively. Also shown are the Potts model 
points on the line 01 = % as well as the special points, where the model reduces to a 
simpler one or factorizes into a product of simpler ones. For the case MI = M2 = 2 in 
figure 1, which is the symmetric Ashkin-Teller model, there are three such special points 
for each lattice. These are the points I on y = 0 and its dual i o n  w1 = 1, where the model 
reduces to the king model, and ZI (self-dual), where a factorization into two (critical) Ising 
models occurs; ZI always lies on the curve 01 = 0:. For this model only, the pseudo-dual 
curves for the hexagonal and triangular lattices can be given explicitly: 

(3.14) 

The phase boundaries for the dual pair S(2) 2 S(3), S(3) I S(2) are shown as figures 2 and 
3; these models can reduce to (critical) king and three-state Potts models. These special 
points are Z on 02 = 0 and P(3) on 01 = 1 for S(2) I S(3) and their duals i on 01 = 1 and 
P(3) on y = 0 for S(3) I S(2). In the case of the self-dual model S(3) I S(3), there is a 
dual pair of special points, P(3) on 02 = 0 and B(3) on 01 = 1, where the model reduces 
to a critical threestate Potts model, see figure 4. 

In the case of the square lattice, the high-temperature series analysis [4] indicates that 
the portion of the pseudo-dual line is indeed a phase boundary for 02 > o1 with complete 
symmetry breaking. In the region 01 > y, there are two phase boundaries, starting at the 
Potts model point P ( M I M z )  and ending at the appropriate points on 01 = 1 and 02 = 0, 
which enclose a phase with partially broken symmetry. Figures 1-4 suggest that the same is 
true for the triangular and hexagonal lattices, so that the curves indicated are, for 02 > 01, 
presumably the exact phase transition curves for complete symmetry breaking. 

For a self-dual model, there may be points in the phase diagram, where a star-triangle 
transformation is exact [5]. If these points are not Potts model or trivial extreme points, 
they are called ‘extra-special’. In figure 4 the extra-special points for the S(3) I S(3) 
model have also been indicated. It has been conjectured that these are the exact points 
where a Kosterlitz-Thouless or massless phase (characterized by algebraic decay of the 
correlation functions) first appears. Such massless phases may be expected for models 
which contain a regular Abelian subgroup Z(M) with M > 5 [2,5]. Since the S(3) I S(3) 
model contains Z(9). a massless phase may be expected here. If the point T really is the 
apex of a massless phase, then this phase seems to be embedded completely inside the 
partially broken symmetry phase. 

(M, - 1)Ol + Ml(M2 - l)@ = (M1Mz)”Z - 1. 

OI = 1 + 02 - (4Wz + 50,2)’” (hex) 01 = 1 - 2 4  (tri). 
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Figure 1. Phase diagrams obtained fmm pseudo-duality 
for the square (s), hexagonal (h) and triangular (t) 
lattices for the symmetric Ashkin-Teller model with 
symmeby group S(2) 2 S(2). Also shown are the four- 
state P2tts phase transition points as well as the points 
I and I. which arr king critical points and I t .  where 
the model factorizes into two critical lsing models. 

Figure 2. As For figure 1~ for the S(2) 1 S(3) model. 
Special points are the six-state- Pom model transition 
point and the points I and P(3) .  where the model 
reduces to a critical king model and to a critical three- 
state Potts model, respectively. 

Figure 3. As for figure 1 For the S(3)  1 82)  model. 
Special points are the duals of those in figure 2. 

Figure 4. As for figure I for the selfdnal S(3)  S(3) 
model. Special points indicated are the nine-state Pom 
model transition point P(9). the points where the model 
reduces to a critical three-state Pom model (P(3 )  and 
P ( 3 ) )  as well as the points TD and T,, which are exm. 
special. i.e. where a sm-triangle transformation exists. 

3.3. Models with primitive symmetry groups 

For models with a primitive symmetry group, no partially broken symmetry phases are 
possible 131. In this subsection, we consider the two models with two independent coupling 
constants, which contain regular Abelian subgroups and have not more than 10 states. These 
are the five-state clock model with symmetry group Z(5) and a nine-state model [3], both 
of which are self-dual. For the Z(5) model, the Boltzmann factor matrix has the form 
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for i  = j 
for i - j f l  mod 5 

02 for i - j f2 mod 5. 
(3.15) 

This matrix has the eigenvalues 

A o ~ =  1 + 201 + 202 

AI  = 1 + $,(a- l)wl - $(&+ I)@ 

A2 = 1 - i ( f i  + I)OI + $,(A - I )WZ 

(non-degenerate) 

(twofold degenerate) (3.16) 

(twofold degenerate). 

For the isotropic square lattice, the pseudo-duality relation of equation (2.16) is the self- 
duality condition again: 

o , + w 2 = ~ ( & - 1 ) .  (3.17) 

For the isotropic triangular and hexagonal lattices, equations (2.19), (2.20) and (3.15), (3.16) 
give the curves shown (together with the line of equation (3.17)) in figure 5. Also shown 
are the critical five-state Potts model point at P ( 5 )  and the extra-special points 
found in [5]. For the square lattice, the short series 141 picked up the phase transition line 
of equation (3.17) only in the neighbourhood of P,(5). It does not seem unreasonable to 
suppose that the curves in figure 5 really represent the phase transition between the two 
extra-special points TI and T2, including the Potts model point P(5). These extra-special 
points could then indeed be the apexes of the massless phases for the present model [18]. 

and 

Figure 5. As for figure 1 for the Z(5) model. The 
special poinrs are P(5) for the critical five-state Poas 
model and the exm-special points Tlh, TU, TI, and Tx. 

Figure 6. As for figure I for the primitive nine-sfate 
model. Here P(9)  is the nine-state Pot*; transilion 
poinC whereas the model factofires into two Critical 
three-state Pous models in Pl(3) md 9(3). 

The nine-state primitive model alluded to above [3] is defined here by giving its 
Boltzmann factor matrix explicitly: 

for i = j 
for (i, j )  an edge of one of the triangles (3.18) w1 

02 otherwise. 
(123), (456). (789), (1471, (258) or (369) 

Q(i, j )  = 
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The symmetry group of this model (which is technically the automorphism group of the 
covering graph of the complement of two triangles) contains Z(3) @ Z(3), but not Z(9), 
so that no Kosterlitz-Thouless phases are to be expected. The eigenvalues of the matrix of 
equation (3.18) are 

A0 = 1 + 401 + 4wz 

AI  = 1 + WI - 2wz (fourfold degenerate) (3.19) 

A2 = 1 - 2wl + 02 

(non-degenerate) 

(fourfold degenerate). 

The pseudwdual curves derived from equations (2.15), (2.19), (2.20) and (3.18), (3.19) are 
shown in figure 6. Also indicated are the nine-state Potts critical point, P(9). and the points 
where the model factorizes into a product of critical three-state Potts models (Pl(3) and 
9(3) on the curves 01 = w; and 02 = w:, respectively). For the present case, figure 6 may 
be expected to be the exact phase diagram, since there are no pmially broken symmetry or 
massless phases for this model. 

4. Quenched bond-diluted spin models 

It is tempting to extend the pseudo-duality relations to cases with quenched bond disorder. 
For the square lattice, equation (2.16) would be replaced by 

{InA:)) + (InAf)) = InM (sq) (4.1) 
where the symbol ( )  denotes an average over bond disorder. Similarly, for the hexagonal 
lattice, equation (2.19) would be replaced by 

whereas equation (2.20) for the triangular lattice becomes 

(4.3) 

In the following, we will consider equations (4.1)-(4.3) only for the Potts model and only for 
the bond-diluted case, so that a bond is present with probability p (or pi in the anisotropic 
case) and absent (this means w = 1 or di) = 1) with probability 1 - p or 1 - p i .  In the 
most general anisotropic case, (4.1)-(4.3) yield the results: 

p I  + (M - I)W(])] + pz ln [ l+  ( M  - ~ ) o ( ~ ) I  = ( p ,  + pz - 1) In M (4.4) 
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In equations (4.5) and (4.6), i and j are those indices from (123) not equal to k. 
Equations (4.4)-(4.6) are consistent with the percolation results of equations (3.7H3.9) 
in the sense that no solution for the Boltzmann factors di) is possible if the probabilities 
pi are such that no percolation occurs; exactly at the percolation thresholds, all di) are 
necessarily equal to zero. 

= we) = w),  equation (4.4) has the explicit 
solution 

For the isotropic case (PI = pz  = p ,  

w = (M(zp-')'(2p) - l)/(M - 1) p 2 4 (sq) (4.7) 

This is identical to a heuristic result due to Southern [19] derived by means of the replica 
trick. For the Ising model, M = 2, this result was first derived by Nishimori 1201, who also 
derived the general equation (4.1) for the isotropic Ising model [21]. The corresponding 
equations determining w in the cases of the other two lattices are (with p ,  = pz = p3 = p 
and ~ ( 1 )  = U(*) = WO),): 

- p3 In[l + ( M  - l)u31 - 3pz(1 - p )  ln[l + ( M  - 1)w21 + 3p2(2 - p) In[l + ( M  - l)w] 

= ( -p3  + 3p2 - 1) ln(M) (hex) (4.8) 

= (-p3 + 3p - 1)In(M) (tri). (4.9) 

p3 In[l + 3(M - l)oz+ ( M  - 1)(M - Z)w3] + 3p(l - pz) In[l+ ( M  - 1)wI 

As shown in figure 7 for the Ising (M = 2) and four-state Potts models, the solutions for w 
of equations (4.8) and (4.9) smoothly interpolate between w = 0 at the percolation threshold 
and the exact critical wc at p = 1 in a way similar to the one given by equation (4.7). 

os 7 
I 

Fiyrr 7. The phase boundaries for lhe quenched bond- 
diluted POUS model as obtained fiom pseudo-duality for 
the three planar lattices (h,s,t) for M = 2 (Ising model) 
and M = 4. pE is the percolation threshold, I and P(4) 
are the pure model transition points. 

In the neighbourhood of the percolation threshold pc, equations (4.7)-(4.9) all imply 
the following behaviour for U:  

0 = (P - pc)(ln(M))/tpc(M - 111 + O((P - ~ 2 )  (4.10) 

which is in accordance with renormalization group [22] and replica trick [23] arguments. 
In the neighbourhood of p = 1, equation (4.7) is known to be incorrect for M = 2 , 3  and 
4 [23]. For M = 2, equation (4.8) can also be compared with an exact result in this limit. 
Here also a (small) discrepancy in T;'(aT,/ap) at p = 1 is found the exact value is 1.579 
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[24], whereas (4.8) gives a value of 1.600. A third limit, M -+ 1, describes the doubly 
diluted case; equations (4.7)-(4.9) all reduce to the exact result [23,75] 

P ( 1  - 0) = Pc (4.11) 

in this limit. 
It is concluded that equations (4.8) and (4.9) are useful approximate relations, which are, 

just as equation (4.7) is exact in a number of limiting cases ( p - p c  small, p = 1 and M -+ 1). 
This can then also be concluded for the general anisotropic results of equations (4.4)-(4.6). 
We will return to the validity of the pseudo-duality relations (including the Nishimori and 
Southern expressions) in the quenched bond-diluted case in section 6. 

5. A counterexample: double percolation 

In this section, we study the M + 1 limit of the self-dual S(M) 2 S ( M )  wreath product 
spin model introduced in section 3.2. To this end, the Boltzmann factor matrix of (3.11) is 
rewritten as ( M I  = MZ = M): 

n ( i , ~ j )  = wz + (1 - oMi, j) + (01 - OJZ)%M(~,  j )  (5.1) 

where S(i, j )  is the Kronecker delta and M i ,  j) is given by 

1 i f i - j m o d M  I 0 otherwise. 
S d i .  j )  = 

The partition function for this model on a graph or lattice is then 

(5.2) 

(5.3) 

Here V and E are the vertex- and edge-sets of L,  respectively, and V I  and uz are the vertices 
at the ends of the edge e. Equation (5.3) can be rewritten using edge variables pe, which 
take the values 0 and 1: 

(5.4) 

Now the edges present (i.e. those with pe = 1) will define a.number of connected 
components. This number will be denoted by Nc[f ie ] .  The form in the square brackets 
in (5.4) is such that if a summation over the spins is done for each connected component, 
then the result will be M times that obtained by summing a product of factors of the form 

AV, j )  = (1 - wl)S( i ,  j )  + (01 - 02) (5.5) 

but with the vertex variables in the range 1 , .  . . , M .  Equation (5.5) is just the Boltzmann 
factor matrix for an M-state Potts model up to a factor: 
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Figure 8. Phase diagrams for double percolation on the planar lattices (h,s,t). The bold curves 
are exact, the fine ones follow from pseudo-duality. The percolation thresholds are at ps .  

Therefore, equation (5.4) is equivalent to 

with Z $ ~ ~ s ( w J )  the partition function for the M-state Potts model on the kth connected 
component. It is noted here that w’ has a physically meaningful value only for W I  > w2, i.e. 
in the region where the S ( M )  S(M) model has an intervening phase with partially broken 
symmetry, see section 3.2. 

In the limit M + 1, (5.7) describes ‘double’ percolation: the first factors amount to a 
probability p = 1 - 02 for the presence of a bond and the factor MN=rflcl will provide a 
phase emsition at p = p c .  If w’ > 0 holds, the product of Potts model partition functions 
can be interpreted as a secondary dilution on percolation clusters: those bonds, which are 
left over on the first dilution, will now have a probability of being still present reduced by 
a factor 

q = l - w ’ = ( 1 - w , ) / ( l - w 2 ) = ( l - w , ) / p .  (5.8) 

There will then be a second phase transition at p q  = pc ,  i.e. for p q  > p c  there is still an 
infinite percolation cluster. Figure 8 shows these phase transition boundaries for the planar 
lattices as bold curves. Also shown here are the (fine) curves given by the pseudo-duality 
relations of equations (2.15)-(2.19), (2.20), which are given by 

P = 1/(1+ 9 )  (sq) 

p 3 ( 1 + q 3 ) - 3 p 2 ( 1 + q 2 ) + 2 = 0  (hex) (5.9) 

p3(1+ 4 3 )  + 3p(l+ 4) + 2 = 0 (tri) 

for the present case. The failure of the pseudo-duality relations is complete here for q c 1: 
this is obviously due to the fact that a percolation interpretation of q (equation (5.8)) is 
possible only for wl > 02, so that, for integer M ,  one always stays in a region of the 
phase diagram with intervening partially broken symmetry phase. This then seems to carry 
through in the limit M + I. 
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6. Discussion 

The successes and failures can be understood qualitatively in a renormalization-group 
context, if one supposes that renormalization keeps a part of the subspace defined by the 
pseudo-duality relations invariant. This part is not attracted to a non-trivial fixed point 
corresponding to a phase, which is either massless or has partially broken symmetry. This 
would explain the failure of the principle in case such phases are present. 

The situation for the quenched bond-diluted systems studied in section 4 is not yet clear 
on this basis. Here the replica method can be used to elucidate this problem: the original 
problem is the calculation of the average of In Z over the disorder. The replica trick replaces 
this average by 

(6.1) 

Now for n integer, the average of Z" is, in the bond-diluted case, 

Here the notation is as in (5.3). This is simply the partition function of a spin model with 
M" states per spin and with the Boltzmann factor matrix given by 

n,(il, . . . (6.3) 

It is now not difficult to see that the equations derived in section 4 would be correct if 
the pseudo-duality relations are valid for all models of the type of equation (6.3) for all R 

(and also, formally, for n i 0). The symmetry group of the model in equation (6.3) is the 
n-fold wreath product of the symmetry group G of n(i, j )  with itself. For these models, 
phases with partially broken symmetry do occur (and also massless phases) as shown in 
sections 3.2 and 5. This then implies that pseudo-duality is not correct for all models of the 
type of equation (6.3) in all regions of the phase diagram and the replica argument indicates 
that this is the reason for the deviations from exact results for the quenched bond-diluted 
models. 

The rest of this section will be devoted to an over-view of the results obtained so as to 
provide some perspective with regard to other results in this field. 

(i) For pure, self-dual models, pseudo-duality on the square lattice is, in general, a 
necessary but not sufficient condition for (Kramers-Wannier) duality. For such models 
with at most two independent Boltzmann factors, pseudo-duality is equivalent to duality, 
however. In this case, pseudo-duality gives no new results. 

(ii) For pure models, which are not self-dual, pseudo-duality gives new information on 
the phase diagrams of such models for the square lattice. These results are partly (i.e. not 
for all possible models) corroborated by high-temperature expansion results [4]. 

(iii) For pure models (self-dual or not) on the hexagonal and triangular lattices, pseudo- 
duality involves a star-triangle transfokation. The results obtained are new, except for the 
Potts model, where they correspond to the exact ones. 

(iv) All pure models treated here have symmetric Boltzmann factor matrices. Such a 
restriction to non-chiral models is not essential, however. For chiral models, see, e.g., the 
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helical Pons model as treated by Kardar [26] or the recent work on the six-state chiral Potts 
model reported in [27]. 

(v) The pseudo-duality results always reduce to exact results in cases where the model 
reduces to the king or Potts models or to a decoupled set of such models. Further checks 
can be provided by an argument due to Kardar [26] and by the requirement of compatibility 
with the inversion relations known to hold for the Potts model on the chequerboard and 
(anisotropic) triangular lattices [28-321. Preliminary calculations seem to indicate that such 
compatibilities are indeed respected. 

(vi) For quenched bond-diluted systems, all results not pertaining to the square lattice 
are new. For the square lattice, the king and Potts model results are identical to the ones 
proposed by Nishimori [ZO] and Southern 1191. Since these are not exact (see section 4, 
the discussion above and also the review [33]), the results for the tziangular and hexagonal 
lattices are also at most useful approximations. For this reason, no results for other diluted 
spin systems have been given. 
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